Sammanfattning

Skogsindustrin i Sverige är idag en del av en allt mer globaliserad marknad vilket skapar ett större behov av att nå ut till sin marknad. Sveriges avståndshandikapp gentemot övriga länder i Kontinentaleuropa gör att transporterna till och från Kontinentaleuropa bör vara kostnadseffektiva samt av god kvalitet.

Studien har visat att det är angeläget för svensk basindustri att höja transportkapaciteten på järnväg genom höjda axellaster, höjd bärighet, större lastprofil samt ökad tåglängd. Däremot skiljer det sig mellan olika godsslag/industrier vad som är den mest gynnsamma lösningen.

Summary

Sweden’s forest industry has indeed become a part of a more globalised world market implying larger needs to reach customers with cost efficient and qualitative transports which is further emphasised by Sweden’s distance handicap compared to the countries of Continental Europe. Undeniably it is a responsible mission for the Swedish Railway Administration (Banverket) to administrate and develop rail infrastructure for both freight and passenger traffic.

It can be established that it is urgent to render it possible for the forest industry to haul heavier trains than today. Operators with domestic operations and harbour connecting operations are in need of raised axle load and bearing capacity (to 25 tonnes and 8 tonnes per meter respectively). Furthermore, larger loading gauge (to Loading Gauge C) and longer sidings (750 metres) for better capacity is needed. Suggested upgrades preferably concern main freight lines and sidings connecting forest industries. Cross-border rail operations will have problems in terms of increasing axle loads and loading gauge within foreseeable future due to European infrastructure standards. Hence, operators with international traffic foremost need to increase train lengths by extending sidings towards 750 metres inducing an almost 20 % capacity increase in terms of loading weight and volume.

Domestic and international rail transports share the needs for rational shunting. The largest shunting hub in Sweden, Hallsberg, has a need for capacity improvements both in the yard
itself as well as the connecting lines where the line between Mjölby and Malmö is the most obvious case where the largest international freight volumes are conveyed. Problems regarding signalling and power supply have only been cursory examined within this study. It can however be noticed that these factors are important for a capacious rail network and hence the effects for the forest industry needs further examining. Environmental effects have only been cursory evaluated within this study although potentially large emission reductions can be presumed by transferring goods volumes from road to rail and/or conveying volume increases with rail.

New locomotives can render heavier trains possible. Foremost, the following combinations are recognised as interesting: two four-axle high locomotives or one performance six-axle locomotive. However, in order to fully benefit from an acquisition of new locomotives, upgrading infrastructure is needed.

Within the scope of the National Railway Administration’s budget, it seems hard to comprise additional projects due to increased construction costs over the last years making ongoing projects more costly. Large ongoing projects like: the Bothnia line, the City Tunnel in Malmö and the City Line in Stockholm, are large budget items leaving less room for additional projects. The Government consequently has to decide for a possible change in infrastructure funding in order to raise capacity for freight trains.

Further studies are considered interesting in order to further examine and recognise how different goods categories with respect to weight, volume and packaging potentially can be transferred from road to rail. Environmental effects are regarded as strong arguments for goods transfer.